

Decarbonizing District Heating with Mega Heat-Pumps!

Raymond.Decorvet@man-es.com Global Business Development Mega Heat-Pumps

Decarbonization & CO2 reduction is the ONLY option !

MEGA Heat-Pumps & District Heating can make a big difference !

MAN-ES New forward strategies

Mega HT Heat-Pumps

Carbon Capture (CCS)

Hydrogen (H2) OUEST

MAN Energy Solutions @ a Glance

Vision:

Building on our unique range of capabilities, we create pioneering solutions to master the business, technical, and operational challenges of decarbonization.

We enable customers to achieve sustainable value creation in the transition towards a carbon neutral future.

District Heating Conference in Serbia - 1. - 3. April 2025

The future is electric: Energy- & Heat 'n' cold transition !

MEGA Heat-Pumps & District Heating can make a big difference !

0 0

How does a heat-pump work?

21st century – The age of the (mega) heat-pumps !

But what makes this technology so superior?

- Proven and mature technology
- Supporting the energy- & heat-transition
- Sustainable and clean NO compromises
- > Decarbonizing heat AND cold production simultaniously. Steam generation.
- > Highly efficient (COP 3+)
- > Vast thermal capacities at high and low temperatures (-15 200+°C)
- > Very robust, reliable and long lasting (>35 years lifetime) No performance drop!
- > Can handle various of heat sources (natural and heat recovery from industry)

MAN (mega) heat-pump solutions

for wide power & temperature ranges

TCC: Transcritical compression cycle, VCC: Vapor compression cycle

Refrigerants: Environment over efficiency and cost !

Refrigerant	Synthetic or Natural?	Commonly Used	ODP	GWP	Flammability	Toxicity
CFC	Synthetic	Commonly recognized as Freon (R11, R12, R113, R114, R115, R502)	.05 to 1	10,000+	Low	Low
HCFC	Synthetic	R22, R123, R401a	.02 to .1	1,000 to 5,000	Low, but higher than CFCs	Low
HFC	Synthetic	R134a, R404a, R407C, R410a	0	<1 to 12,500	None	Low
HFO	Synthetic	R1234yf, R1234ze(E), R1234ze(Z)	0	<1	Low	Low
Ammonia (NH₃)	Natural	R717	0	0	Low	High
Carbon Dioxide (CO ₂)	Natural	R744	0	1	None	Low
нс	Natural	R290, R600a, R170, R1150, R600, R601	0	<1	High	Low

Pushing the boundries

Olympic sized swimming pool

Water: 2.5 million litres @ 20°C

MAN CO2 mega heat-pump

- 1 HOFIM compressor
- 16 MW electricity input

How much time does it take to bring this water to the boiling point?

< 4 hours

and to freeze < 11 hours

Heat sources for MAN heat-pumps

Source: Ighvacstory.com

(Waste-)Water / liquid

Source: Rogers & Sons

Geothermal subsurface @ 10 – 25°C Ambient air @ -20°C

Industry waste heat

Good industry heat sources

Data Centers

Πh

- Carbon Capture
- H2 production sites
- Any decarbonised process

Thermal storage for operation flexibility & optimisation

Short term hot storage 1'000 – 80'000 m³ «Seasonal» hot storage

Ice storage

Groundbraking District heating projects

2021: Esbjerg (DK)

First seawater CO_2 Heat Pump for district heating 2x 35 MWthermal / in operation since Dezember 25

World's largest seawater CO₂ Heat Pump for district heating 4x 44MWth

2024: Patola (FI)

World's largest Air-to-Water CO₂ Heat Pump for Helsinki's district heating 1x 22-33 MWth

2024: Vicinity (USA)

Largest steam Heat Pump for district heating 33 MWth

Largest river water Heat Pump for Cologne's district heating 3x 50MWth

464 MW thermal

500,000t CO₂ savings

.... and more to come !

MAN Compressor in factory

MAN Compressor @ site in Esbjerg

CO₂ storage tank

MAN

Transcritical CO₂ (TCC) heat-pump design

- HOFIM Radial Compressor
- Thermal output per unit/day:
 - 50 MW_{th} heat
 - 30 MW_{th} cold
- CO₂ (R744) as refrigerant
- Temperature levels -15° 150+ °C
- Lifetime: +35 years

HOFIM Compressor for CO₂ (TCC) heat-pumps

High Speed Oil Free Integrated Motor compressor HOFIM™

- > Reduced footprint (max. 4m x 8m)
- Integrated high-speed motor (10'000-18'000 rpm)
- > No gearbox \rightarrow noise reduction (ca. 90 dB)
- > Magnetic bearings → no oil lubrication
- \succ Hermetically sealed \rightarrow No leakage / loss of refrigerant

HOFIM™ Radial Compressor

High speed Oil Free Integrated Motor compressor

MAN HOFIM[™] compressor technology for grid balancing

- Increase & decrease el. power consumption up to 8 MWel in < 30sec</p>
- Run DH stable operation down to 20% of the nominal duty with thermal storage as buffer

Compander: HOFIM® with integrated expander

Efficiency DH: Return temperature down \rightarrow COP up !

MAN turnkey solutions

MAN Energy Solutions delivery

- Compressor unit
- Heat Exchanger (Condenser) on hot side
- Evaporator on cold side
- Complete piping and steel structure
- Refrgerant tank
 - Valves, instrumentation, connecting cables, DHN water pumps, seawater pumps
 - Complete electrical scope
 - Complete control system
 - FAT of main equipment
 - · Installation and commissioning
 - On site testing

Typical scope of delivery

Grid, heat-sink and heat-source connection

Civil work (e.g. roads, buildings)

«If you're willing to change the world – let_heat-pumps be your energy!»

